Back to Search
Start Over
Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm
- Source :
- IEEE Transactions on Signal Processing. 48:3303-3306
- Publication Year :
- 2000
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2000.
-
Abstract
- Maximum likelihood (ML) estimates of K-distribution parameters are derived using the expectation maximization (EM) approach. This approach demonstrates the computational advantages compared with 2-D numerical maximization of the likelihood function using a Nelder-Mead approach. For large datasets, the EM approach yields more accurate estimates than those of a non-ML estimation technique.
- Subjects :
- Mathematical optimization
Estimation theory
Iterative method
Numerical analysis
Maximization
Maximum likelihood sequence estimation
Computer Science::Multimedia
Signal Processing
Expectation–maximization algorithm
Statistics::Methodology
Electrical and Electronic Engineering
Likelihood function
Algorithm
K-distribution
Mathematics
Subjects
Details
- ISSN :
- 1053587X
- Volume :
- 48
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Signal Processing
- Accession number :
- edsair.doi.dedup.....06840a7b9a38dd2a97872bdcafbbd62a
- Full Text :
- https://doi.org/10.1109/78.886993