Back to Search Start Over

Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm

Authors :
S. Furui
W.J.J. Roberts
Source :
IEEE Transactions on Signal Processing. 48:3303-3306
Publication Year :
2000
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2000.

Abstract

Maximum likelihood (ML) estimates of K-distribution parameters are derived using the expectation maximization (EM) approach. This approach demonstrates the computational advantages compared with 2-D numerical maximization of the likelihood function using a Nelder-Mead approach. For large datasets, the EM approach yields more accurate estimates than those of a non-ML estimation technique.

Details

ISSN :
1053587X
Volume :
48
Database :
OpenAIRE
Journal :
IEEE Transactions on Signal Processing
Accession number :
edsair.doi.dedup.....06840a7b9a38dd2a97872bdcafbbd62a
Full Text :
https://doi.org/10.1109/78.886993