Back to Search Start Over

Supervised Quantum Learning without Measurements

Authors :
Lucas Lamata
Unai Alvarez-Rodriguez
Pablo Escandell-Montero
Enrique Solano
José D. Martín-Guerrero
Source :
Addi. Archivo Digital para la Docencia y la Investigación, instname, Scientific Reports, Vol 7, Iss 1, Pp 1-9 (2017), Scientific Reports
Publication Year :
2017
Publisher :
Nature Publishing, 2017.

Abstract

We propose a quantum machine learning algorithm for efficiently solving a class of problems encoded in quantum controlled unitary operations. The central physical mechanism of the protocol is the iteration of a quantum time-delayed equation that introduces feedback in the dynamics and eliminates the necessity of intermediate measurements. The performance of the quantum algorithm is analyzed by comparing the results obtained in numerical simulations with the outcome of classical machine learning methods for the same problem. The use of time-delayed equations enhances the toolbox of the field of quantum machine learning, which may enable unprecedented applications in quantum technologies. The authors acknowledge support from Basque Government grants BFI-2012-322 and IT986-16, Spanish MINECO/FEDER FIS2015-69983-P, Ramon y Cajal Grant RYC-2012-11391, and UPV/EHU UFI 11/55.

Details

Database :
OpenAIRE
Journal :
Addi. Archivo Digital para la Docencia y la Investigación, instname, Scientific Reports, Vol 7, Iss 1, Pp 1-9 (2017), Scientific Reports
Accession number :
edsair.doi.dedup.....063a9eb2ad1ef1915c3b323f994326af