Back to Search Start Over

3D Printing High-Consistency Enzymatic Nanocellulose Obtained from a Soda-Ethanol-O2 Pine Sawdust Pulp

Authors :
Heli Kangas
Fernando Esteban Felissia
Daniel Filgueira
Panu Lahtinen
Camila M. Imlauer
Gary Chinga-Carrasco
María Evangelina Vallejos
Maria Cristina Area
Nanci Vanesa Ehman
Source :
Bioengineering; Volume 6; Issue 3; Pages: 60, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Bioengineering, Vol 6, Iss 3, p 60 (2019), Bioengineering, 6(3):60, Kangas, H, Felissia, F E, Filgueira, D, Ehman, N V, Vallejos, M E, Imlauer, C M, Lahtinen, P, Area, M C & Chinga-Carrasco, G 2019, ' 3D Printing High-Consistency Enzymatic Nanocellulose Obtained from a Soda-Ethanol-O2 Pine Sawdust Pulp ', Bioengineering, vol. 6, 60 . https://doi.org/10.3390/bioengineering6030060
Publication Year :
2019
Publisher :
MDPI, 2019.

Abstract

Soda-ethanol pulps, prepared from a forestry residue pine sawdust, were treated according to high-consistency enzymatic fibrillation technology to manufacture nanocellulose. The obtained nanocellulose was characterized and used as ink for three-dimensional (3D) printing of various structures. It was also tested for its moisture sorption capacity and cytotoxicity, as preliminary tests for evaluating its suitability for wound dressing and similar applications. During the high-consistency enzymatic treatment it was found that only the treatment of the O2-delignified pine pulp resulted in fibrillation into nano-scale. For 3D printing trials, the material needed to be fluidized further. By 3D printing, it was possible to fabricate various structures from the high-consistency enzymatic nanocellulose. However, the water sorption capacity of the structures was lower than previously seen with porous nanocellulose structures, indicating that further optimization of the material is needed. The material was found not to be cytotoxic, thus showing potential as material, e.g., for wound dressings and for printing tissue models. Fil: Kangas, Heli. Technical Research Centre; Finlandia Fil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Filgueira, Daniel. No especifíca; Fil: Ehman, Nanci Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Vallejos, María Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Imlauer Vedoya, Camila María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Lahtinen, Panu. Technical Research Centre; Finlandia Fil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Chinga Carrasco, Gary. No especifíca

Details

Language :
English
ISSN :
23065354
Volume :
6
Database :
OpenAIRE
Journal :
Bioengineering
Accession number :
edsair.doi.dedup.....0633d93d76799e1c3c4cc287cc15b0df
Full Text :
https://doi.org/10.3390/bioengineering6030060