Back to Search Start Over

Does Explainable Artificial Intelligence Improve Human Decision-Making?

Authors :
Laura R. Marusich
Murat Kantarcioglu
Yan Zhou
Jonathan Z. Bakdash
Yasmeen Alufaisan
Source :
AAAI
Publication Year :
2021
Publisher :
Association for the Advancement of Artificial Intelligence (AAAI), 2021.

Abstract

Explainable AI provides insights to users into the why for model predictions, offering potential for users to better understand and trust a model, and to recognize and correct AI predictions that are incorrect. Prior research on human and explainable AI interactions has focused on measures such as interpretability, trust, and usability of the explanation. There are mixed findings whether explainable AI can improve actual human decision-making and the ability to identify the problems with the underlying model. Using real datasets, we compare objective human decision accuracy without AI (control), with an AI prediction (no explanation), and AI prediction with explanation. We find providing any kind of AI prediction tends to improve user decision accuracy, but no conclusive evidence that explainable AI has a meaningful impact. Moreover, we observed the strongest predictor for human decision accuracy was AI accuracy and that users were somewhat able to detect when the AI was correct vs. incorrect, but this was not significantly affected by including an explanation. Our results indicate that, at least in some situations, the why information provided in explainable AI may not enhance user decision-making, and further research may be needed to understand how to integrate explainable AI into real systems.

Details

ISSN :
23743468 and 21595399
Volume :
35
Database :
OpenAIRE
Journal :
Proceedings of the AAAI Conference on Artificial Intelligence
Accession number :
edsair.doi.dedup.....06328aa75da97f03f9d6b1bd871cffcf