Back to Search
Start Over
Speed, force, and power values produced from nonmotorized treadmill test are related to sprinting performance
- Source :
- Journal of strength and conditioning research. 28(7)
- Publication Year :
- 2014
-
Abstract
- The relationships between 30-m sprint time and performance on a nonmotorized treadmill (TM) test and a vertical jump test were determined in this investigation. Seventy-eight physically active men and women (22.9 ± 2.7 years; 73.0 ± 14.7 kg; 170.7 ± 10.4 cm) performed a 30-second maximal sprint on the curve nonmotorized TM after 1 familiarization trial. Pearson product-moment correlation coefficients produced significant (p ≤ 0.05) moderate to very strong relationships between 30-m sprint time and body mass (r = -0.37), %fat (r = 0.79), peak power (PP) (r = -0.59), relative PP (r = -0.42), time to peak velocity (r = -0.23) and TM sprint times at 10 m (r = 0.48), 20 m (r = 0.59), 30 m (r = 0.67), 40 m (r = 0.71), and 50 m (r = 0.75). Strong relationships between 30-m sprint time and peak (r = -0.479) and mean vertical jump power (r = -0.559) were also observed. Subsequently, stepwise regression was used to produce two 30-m sprint time prediction models from TM performance (TM1: body mass + TM data and TM2: body composition + TM data) in a validation group (n = 39), and then crossvalidated against another group (n = 39). As no significant differences were observed between these groups, data were combined (n = 72) and used to create the final prediction models (TM1: r = 0.75, standard error of the estimate (SEE) = 0.27 seconds; TM2: r = 0.84, SEE = 0.22 seconds). These final movement-specific models seem to be more accurate in predicting 30-m sprint time than derived peak (r = 0.23, SEE = 0.48 seconds) and mean vertical jump power (r = 0.31, SEE = 0.45 seconds) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It, therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-second maximal sprinting test.
- Subjects :
- Adult
Male
SPRINTING PERFORMANCE
Body Weight
Environment controlled
Physical Therapy, Sports Therapy and Rehabilitation
General Medicine
Stepwise regression
Athletic Performance
Models, Theoretical
Power (physics)
Running
Vertical jump
Young Adult
Standard error
Sprint
Predictive Value of Tests
Statistics
Exercise Test
Humans
Orthopedics and Sports Medicine
Female
Treadmill
Mathematics
Adiposity
Subjects
Details
- ISSN :
- 15334287
- Volume :
- 28
- Issue :
- 7
- Database :
- OpenAIRE
- Journal :
- Journal of strength and conditioning research
- Accession number :
- edsair.doi.dedup.....0617b328a5088e2d12a47799ceb8f751