Back to Search Start Over

Inhibition and stimulation of rat luteal protein phosphorylation by protein kinase effectors

Authors :
Assaf Steinschneider
Geula Gibori
I. Khan
Source :
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1093:102-110
Publication Year :
1991
Publisher :
Elsevier BV, 1991.

Abstract

Estradiol-17 beta (E2) predetermined protein phosphorylation systems have been identified recently in midpregnant rat corpus luteum. Major type protein kinase activities in these systems were explored here using as probes protein kinase inhibitors. Luteal nuclear, mitochondrial, microsomal and cytosolic fractions were obtained from rats hysterectomized and hypophysectomized on day 12 of pregnancy and then treated for 72 h with E2. In vitro phosphate transfer from [gamma-32P]ATP was monitored by SDS-PAGE followed by autoradiography. Polymyxin B (PMB), 1-200 microM, a PKC inhibitor, completely blocked, in a dose dependent manner, the Ca2+ phospholipid (PL) stimulated radiolabeling of nuclear fraction Mr 79,000 substrate(s) as expected. Similarly, the calmodulin (CaM) antagonist compound 48/80, 1-20 micrograms/ml, inhibited the Ca2+/CaM-dependent phosphorylation of the microsomal fraction Mr 60,000 and Mr 56,000 proteins. The Ca2+ PL-enhanced labeling of mitochondrial fraction Mr 76,000 substrate(s) was only partially susceptible to inhibition by PMB or compound 48/80. Studies of microsomal fraction phosphoprotein bands not stimulated by added cofactors indicated that the radiolabeling of Mr 75,000 protein(s) was partially blocked by compound 48/80 but not by PMB. Phosphate transfer to Mr 41,000 protein(s) was inhibited by the cAMP-dependent kinase protein inhibitor (PKI), while the phosphorylation of Mr 31,000 protein(s) was refractory to all inhibitors employed here. Surprisingly, regardless of hormonal pretreatment, PMB and compound 48/80 activated in every subcellular fraction the cofactor independent appearance of at least one phosphoprotein band, between Mr 87,000-99,000. This novel observation should be instrumental in understanding the actions of these compounds towards living cells.

Details

ISSN :
01674889
Volume :
1093
Database :
OpenAIRE
Journal :
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Accession number :
edsair.doi.dedup.....05ec622f543f9378916cbe36d0de6b8c