Back to Search Start Over

High-Dimensional Gaussian Sampling: A Review and a Unifying Approach Based on a Stochastic Proximal Point Algorithm

Authors :
Maxime Vono
Nicolas Dobigeon
Pierre Chainais
HUAWEI Technologies France (HUAWEI)
Signal et Communications (IRIT-SC)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Centre de Recherche Réseau Image SysTème Architecture et MuLtimédia (CRISTAL)
École Nationale des Sciences de l'Informatique [Manouba] (ENSI)
Université de la Manouba [Tunisie] (UMA)-Université de la Manouba [Tunisie] (UMA)
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Source :
SIAM Review, SIAM Review, Society for Industrial and Applied Mathematics, In press, à paraître, pp.1-53
Publication Year :
2022
Publisher :
Society for Industrial & Applied Mathematics (SIAM), 2022.

Abstract

Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have been proposed from different communities ranging from iterative numerical linear algebra to Markov chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these methods have been conducted. This paper aims at reviewing all these approaches by pointing out their differences, close relations, benefits and limitations. In addition to this state of the art, this paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed and illustrated with numerical examples.<br />53 pages, 11 figures

Details

ISSN :
10957200 and 00361445
Volume :
64
Database :
OpenAIRE
Journal :
SIAM Review
Accession number :
edsair.doi.dedup.....05cf7deaaac9edc7ffe2d287724fb7fb