Back to Search
Start Over
High-Dimensional Gaussian Sampling: A Review and a Unifying Approach Based on a Stochastic Proximal Point Algorithm
- Source :
- SIAM Review, SIAM Review, Society for Industrial and Applied Mathematics, In press, à paraître, pp.1-53
- Publication Year :
- 2022
- Publisher :
- Society for Industrial & Applied Mathematics (SIAM), 2022.
-
Abstract
- Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have been proposed from different communities ranging from iterative numerical linear algebra to Markov chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these methods have been conducted. This paper aims at reviewing all these approaches by pointing out their differences, close relations, benefits and limitations. In addition to this state of the art, this paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed and illustrated with numerical examples.<br />53 pages, 11 figures
- Subjects :
- FOS: Computer and information sciences
Computational Mathematics
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Applied Mathematics
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Statistics - Computation
[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an]
Computation (stat.CO)
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Theoretical Computer Science
Subjects
Details
- ISSN :
- 10957200 and 00361445
- Volume :
- 64
- Database :
- OpenAIRE
- Journal :
- SIAM Review
- Accession number :
- edsair.doi.dedup.....05cf7deaaac9edc7ffe2d287724fb7fb