Back to Search
Start Over
Weyl group actions on the Springer sheaf
- Source :
- Proceedings of the London Mathematical Society, Proceedings of the London Mathematical Society, 2014, 108, pp.1501-1528, Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108, pp.1501-1528
- Publication Year :
- 2014
- Publisher :
- HAL CCSD, 2014.
-
Abstract
- We show that two Weyl group actions on the Springer sheaf with arbitrary coefficients, one defined by Fourier transform and one by restriction, agree up to a twist by the sign character. This generalizes a familiar result from the setting of l-adic cohomology, making it applicable to modular representation theory. We use the Weyl group actions to define a Springer correspondence in this generality, and identify the zero weight spaces of small representations in terms of this Springer correspondence.<br />Comment: 27 pages; version 2: accepted version, with minor changes recommended by referee
- Subjects :
- Modular representation theory
Pure mathematics
GeneralLiterature_INTRODUCTORYANDSURVEY
General Mathematics
17B08, 20G05 (Primary) 14M15 (Secondary)
01 natural sciences
symbols.namesake
0103 physical sciences
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
0101 mathematics
Representation Theory (math.RT)
Mathematics::Representation Theory
Mathematics
Weyl group
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
010102 general mathematics
Zero (complex analysis)
16. Peace & justice
Cohomology
Character (mathematics)
symbols
Sheaf
010307 mathematical physics
Springer correspondence
Mathematics - Representation Theory
Sign (mathematics)
Subjects
Details
- Language :
- English
- ISSN :
- 00246115 and 1460244X
- Database :
- OpenAIRE
- Journal :
- Proceedings of the London Mathematical Society, Proceedings of the London Mathematical Society, 2014, 108, pp.1501-1528, Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108, pp.1501-1528
- Accession number :
- edsair.doi.dedup.....05ba7bde07dfc3fa392113f23278cff1