Back to Search Start Over

Weyl group actions on the Springer sheaf

Authors :
Daniel Juteau
Simon Riche
Anthony Henderson
Pramod N. Achar
Department of Mathematics [Baton Rouge] (LSU Mathematics)
Louisiana State University (LSU)
School of Mathematics and statistics [Sydney]
The University of Sydney
Laboratoire de Mathématiques Nicolas Oresme (LMNO)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Blaise Pascal (LMBP)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Source :
Proceedings of the London Mathematical Society, Proceedings of the London Mathematical Society, 2014, 108, pp.1501-1528, Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108, pp.1501-1528
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

We show that two Weyl group actions on the Springer sheaf with arbitrary coefficients, one defined by Fourier transform and one by restriction, agree up to a twist by the sign character. This generalizes a familiar result from the setting of l-adic cohomology, making it applicable to modular representation theory. We use the Weyl group actions to define a Springer correspondence in this generality, and identify the zero weight spaces of small representations in terms of this Springer correspondence.<br />Comment: 27 pages; version 2: accepted version, with minor changes recommended by referee

Details

Language :
English
ISSN :
00246115 and 1460244X
Database :
OpenAIRE
Journal :
Proceedings of the London Mathematical Society, Proceedings of the London Mathematical Society, 2014, 108, pp.1501-1528, Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108, pp.1501-1528
Accession number :
edsair.doi.dedup.....05ba7bde07dfc3fa392113f23278cff1