Back to Search Start Over

FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications

Authors :
Sergio Rodriguez
Dai Duong Nguyen
Abdelhafid El Ouardi
Samir Bouaziz
Hanoi University of Science and Technology (HUST)
Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE)
École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)
M.E.S.R.I grant founding
Source :
Journal of Real-Time Image Processing, Journal of Real-Time Image Processing, Springer Verlag, In press, ⟨10.1007/s11554-020-00986-9⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at $$1226 \times 370$$ pixels (handling 1750 features) or 14 fps at $$1920 \times 1080$$ pixels (handling 6929 features).

Details

Language :
English
ISSN :
18618200 and 18618219
Database :
OpenAIRE
Journal :
Journal of Real-Time Image Processing, Journal of Real-Time Image Processing, Springer Verlag, In press, ⟨10.1007/s11554-020-00986-9⟩
Accession number :
edsair.doi.dedup.....05a395584abfe9f28550f417f8e81fcb