Back to Search Start Over

Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study

Authors :
Hamido Fujita
Ali Selamat
Takeru Yokoi
Nguyet Quang Do
Ondrej Krejcar
Source :
Digibug. Repositorio Institucional de la Universidad de Granada, Consorcio Madroño, Applied Sciences, Volume 11, Issue 19, Applied Sciences, Vol 11, Iss 9210, p 9210 (2021)
Publication Year :
2021
Publisher :
MDPI, 2021.

Abstract

This work was supported/funded by the Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2018/ICT04/UTM/01/1). The authors sincerely thank Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia Research University Network (MRUN) Vot 4L876, for the completion of the research. Faculty of Informatics and Management, University of Hradec Kralove, SPEV project Grant Number: 2102/2021.<br />Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain.<br />Ministry of Higher Education under the Fundamental Research Grant Scheme FRGS/1/2018/ICT04/UTM/01/1<br />Universiti Teknologi Malaysia (UTM) Vot-20H04<br />Malaysia Research University Network (MRUN) 4L876<br />Faculty of Informatics and Management, University of Hradec Kralove, SPEV project 2102/2021.

Details

Language :
English
Database :
OpenAIRE
Journal :
Digibug. Repositorio Institucional de la Universidad de Granada, Consorcio Madroño, Applied Sciences, Volume 11, Issue 19, Applied Sciences, Vol 11, Iss 9210, p 9210 (2021)
Accession number :
edsair.doi.dedup.....0582f728884b26a7849d4c223da8a988