Back to Search Start Over

Predicting and elucidating the etiology of fatty liver disease using a machine learning-based approach: an IMI DIRECT study

Authors :
Femke Rutters
Naeimeh Atabaki-Pasdar
Donna McEvoy
Helle Krogh Pedersen
Jerzy Adamski
Torben Hansen
Gary Frost
François Pattou
Hartmut Ruetten
Gwen Kennedy
Emmanouil T. Dermitzakis
Ana Viñuela
Federico De Masi
Robert W. Koivula
Hugo Pomares-Millan
Henrik S. Thomsen
Alison Heggie
Jochen M. Schwenk
Ragna S. Häussler
Sapna Sharma
Cecilia Engel Thomas
Mun-Gwan Hong
Joline W.J. Beulens
Anubha Mahajan
Petra J. M. Elders
Imre Pavo
Mark Walker
Juan P. Fernandez
Ian M Forgie
Timothy J. McDonald
Mattias Ohlsson
Hugo Fitipaldi
Adem Y. Dawed
Ramneek Gupta
Giuseppe N. Giordano
Søren Brunak
Mark Haid
Tarja Kokkola
Andrew T. Hattersley
Francesca Frau
Pascal M. Mutie
Martin Ridderstråle
Tue H. Hansen
Andrea Mari
Jagadish Vangipurapu
Elizaveta Chabanova
Henna Cederberg
Jimmy D. Bell
Azra Kurbasic
Henrik Vestergaard
Leen M 't Hart
Violeta Raverdy
Matilda Dale
Kristine H. Allin
Mark I. McCarthy
Angus G. Jones
E. Louise Thomas
Paul W. Franks
Markku Laakso
Petra B. Musholt
Soren Brage
Ewan R. Pearson
Oluf Pedersen
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

BackgroundNon-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in type 2 diabetes (T2D) and beyond. Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and ultimately hepatocellular carcinomas.Methods and FindingsUtilizing the baseline data from the IMI DIRECT participants (n=1514) we sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Multi-omic (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, and measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI image-derived liver fat content (ConclusionsWe have developed clinically useful liver fat prediction models (see:www.predictliverfat.org) and identified biological features that appear to affect liver fat accumulation.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....0580d47b123af81513e6295d8ce068e1
Full Text :
https://doi.org/10.1101/2020.02.10.20021147