Back to Search Start Over

Scavenger Receptor Class B Type I-mediated Reverse Cholesterol Transport Is Inhibited by Advanced Glycation End Products

Authors :
Ryoji Nagai
Akira Miyazaki
Nobutaka Ohgami
Mamoru Ikemoto
Hiroyuki Arai
Seikoh Horiuchi
Hitoshi Nakayama
Source :
Journal of Biological Chemistry. 276:13348-13355
Publication Year :
2001
Publisher :
Elsevier BV, 2001.

Abstract

Cellular interactions of advanced glycation end products (AGE) are mediated by AGE receptors. We demonstrated previously that class A scavenger receptor types I and II (SR-A) and CD36, a member of class B scavenger receptor family, serve as the AGE receptors. In this study, we investigated whether scavenger receptor class B type I (SR-BI), another receptor belonging to class B scavenger receptor family, was also an AGE receptor. We used Chinese hamster ovary (CHO) cells overexpressed hamster SR-BI (CHO-SR-BI cells). (125)I-AGE-bovine serum albumin (AGE-BSA) was endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CHO-SR-BI cells. (125)I-AGE-BSA exhibited saturable binding to CHO-SR-BI cells (K(d) = 8.3 microg/ml). Endocytic uptake of (125)I-AGE-BSA by CHO-SR-BI cells was completely inhibited by oxidized low density lipoprotein (LDL) and acetylated LDL, whereas LDL exerted only a weak inhibitory effect (20%). Cross-competition experiments showed that AGE-BSA had no effect on HDL binding to these cells and vice versa. Interestingly, however, SR-BI-mediated selective uptake of HDL-CE was completely inhibited by AGE-BSA in a dose-dependent manner (IC(50)10 microg/ml). Furthermore, AGE-BSA partially inhibited (by30%) the selective uptake of HDL-CE in human hepatocarcinoma HepG2 cells (IC(50)30 microg/ml). In addition, [(3)H]cholesterol efflux from CHO-SR-BI cells to HDL was significantly inhibited by AGE-BSA in a dose-dependent manner (IC(50)30 microg/ml). Our results indicate that AGE proteins, as ligands for SR-BI, effectively inhibit both SR-BI-mediated selective uptake of HDL-CE and cholesterol efflux from peripheral cells to HDL, suggesting that AGE proteins might modulate SR-BI-mediated cholesterol metabolism in vivo.

Details

ISSN :
00219258
Volume :
276
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....0572e8c316ba4293304feb26ca17e324
Full Text :
https://doi.org/10.1074/jbc.m011613200