Back to Search Start Over

P38 and ERK1/2 MAPKs Act in Opposition to Regulate BMP9-Induced Osteogenic Differentiation of Mesenchymal Progenitor Cells

Authors :
Bai-Cheng He
Jinyong Luo
Tao Song
Juanwen He
Jin Wang
Yingze Zhao
Wenjuan Wang
Min Tang
Ningning Wu
Source :
PLoS ONE, Vol 7, Iss 8, p e43383 (2012), PLoS ONE
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation and bone formation, the precise molecular mechanism involved remains to be fully elucidated. In this current study, we explore the possible involvement and detail effects of p38 and ERK1/2 MAPKs on BMP9-indcued osteogenic differentiation of mesenchymal progenitor cell (MPCs). We find that BMP9 simultaneously stimulates the activation of p38 and ERK1/2 in MPCs. BMP9-induced early osteogenic marker, such as alkaline phosphatase (ALP), and late osteogenic markers, such as matrix mineralization and osteocalcin (OC) are inhibited by p38 inhibitor SB203580, whereas enhanced by ERK1/2 inhibitor PD98059. BMP9-induced activation of Runx2 and Smads signaling are reduced by SB203580, and yet increased by PD98059 in MPCs. The in vitro effects of inhibitors are reproduced with adenoviruses expressing siRNA targeted p38 and ERK1/2, respectively. Using mouse calvarial organ culture and subcutaneous MPCs implantation, we find that inhibition of p38 activity leads to significant decrease in BMP9-induced osteogenic differentiation and bone formation, however, blockage of ERK1/2 results in effective increase in BMP9-indcued osteogenic differentiation in vivo. Together, our results reveal that p38 and ERK1/2 MAPKs are activated in BMP9-induced osteogenic differentiation of MPCs. What is most noteworthy, however, is that p38 and ERK1/2 act in opposition to regulate BMP9-induced osteogenic differentiation of MPCs.

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
8
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....056f02527ec385de466458285b67858a