Back to Search Start Over

Glutamate spillover inC. eleganstriggers repetitive behavior through presynaptic activation of MGL-2/mGluR5

Authors :
Wolfgang Keil
Francis Corson
Shai Shaham
Anupriya Singhal
Yun Lu
Andrea Bae
Menachem Katz
Yupu Liang
Rockefeller University [New York]
Laboratoire de Physique Statistique de l'ENS (LPS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Biophysique et Neuroscience Théoriques
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2019, 10, pp.1882. ⟨10.1038/s41467-019-09581-4⟩, Nature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
Publication Year :
2018
Publisher :
Cold Spring Harbor Laboratory, 2018.

Abstract

Glutamate is a major excitatory neurotransmitter, and impaired glutamate clearance following synaptic release promotes spillover, inducing extra-synaptic signaling. The effects of glutamate spillover on animal behavior and its neural correlates are poorly understood. We developed a glutamate spillover model in Caenorhabditis elegans by inactivating the conserved glial glutamate transporter GLT-1. GLT-1 loss drives aberrant repetitive locomotory reversal behavior through uncontrolled oscillatory release of glutamate onto AVA, a major interneuron governing reversals. Repetitive glutamate release and reversal behavior require the glutamate receptor MGL-2/mGluR5, expressed in RIM and other interneurons presynaptic to AVA. mgl-2 loss blocks oscillations and repetitive behavior; while RIM activation is sufficient to induce repetitive reversals in glt-1 mutants. Repetitive AVA firing and reversals require EGL-30/Gαq, an mGluR5 effector. Our studies reveal that cyclic autocrine presynaptic activation drives repetitive reversals following glutamate spillover. That mammalian GLT1 and mGluR5 are implicated in pathological motor repetition suggests a common mechanism controlling repetitive behaviors.<br />Katz and colleagues examine glutamate spillover effects on C. elegans behaviour. They show that impaired synaptic glutamate clearance in glial glutamate transporter mutants, causes presynaptic mgl-2/mGluR5 activation, generating postsynaptic neural activity oscillations driving repetitive behaviour.

Details

ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, Nature Publishing Group, 2019, 10, pp.1882. ⟨10.1038/s41467-019-09581-4⟩, Nature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
Accession number :
edsair.doi.dedup.....055601a747963a0e5c5bd942ab68f24f