Back to Search
Start Over
Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition
- Source :
- PLoS ONE, Vol 14, Iss 4, p e0212654 (2019), PLoS ONE
- Publication Year :
- 2019
- Publisher :
- Public Library of Science (PLoS), 2019.
-
Abstract
- Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.
- Subjects :
- 0106 biological sciences
0301 basic medicine
Iron
Science
Heterotroph
Biomass
Rhodovulum
Photosynthesis
01 natural sciences
Polyhydroxyalkanoates
03 medical and health sciences
Marine bacteriophage
Bacterial Proteins
010608 biotechnology
Food science
chemistry.chemical_classification
Multidisciplinary
biology
Chemistry
biology.organism_classification
Carbon
030104 developmental biology
Medicine
Photosynthetic bacteria
Essential nutrient
Bacteria
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 14
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....055492a7579ed91cc378632a7710812d