Back to Search
Start Over
Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS2 and MoS2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactions
- Source :
- Materials, Vol 14, Iss 896, p 896 (2021), Materials, Volume 14, Issue 4
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Fuel cells are emerging devices as clean and renewable energy sources, provided their efficiency is increased. In this work, we prepared nanocomposites based on multiwalled carbon nanotubes (MWNTs) and transition metal dichalcogenides (TMDs), namely WS2 and MoS2, and evaluated their performance as electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), relevant to fuel cells. The one- and two-dimensional (1D and 2D) building blocks were initially exfoliated and non-covalently functionalized by surfactants of opposite charge in aqueous media (tetradecyltrimethylammonium bromide, TTAB, for the nanotubes and sodium cholate, SC, for the dichalcogenides), and thereafter, the three-dimensional (3D) MoS2@MWNT and WS2@MWNT composites were assembled via surfactant-mediated electrostatic interactions. The nanocomposites were characterized by scanning electron microscopy (SEM) and structural differences were found. WS2@MWNT and MoS2@MWNT show moderate ORR performance with potential onsets of 0.71 and 0.73 V vs. RHE respectively, and diffusion-limiting current densities of −1.87 and −2.74 mA·cm−2, respectively. Both materials present, however, better tolerance to methanol crossover when compared to Pt/C and good stability. Regarding OER performance, MoS2@MWNT exhibits promising results, with η10 and jmax of 0.55 V and 17.96 mA·cm−2, respectively. The fabrication method presented here is cost-effective, robust and versatile, opening the doors for the optimization of electrocatalysts’ performance.
- Subjects :
- Fabrication
Materials science
Scanning electron microscope
chemistry.chemical_element
02 engineering and technology
Carbon nanotube
010402 general chemistry
Electrocatalyst
lcsh:Technology
01 natural sciences
Oxygen
Article
surfactants
law.invention
Transition metal
law
nanocomposites
electrocatalysis
General Materials Science
lcsh:Microscopy
lcsh:QC120-168.85
Nanocomposite
carbon nanotubes
lcsh:QH201-278.5
lcsh:T
transition metal dichalcogenides
oxygen reactions
Oxygen evolution
021001 nanoscience & nanotechnology
0104 chemical sciences
chemistry
Chemical engineering
lcsh:TA1-2040
non-covalent functionalization
lcsh:Descriptive and experimental mechanics
lcsh:Electrical engineering. Electronics. Nuclear engineering
lcsh:Engineering (General). Civil engineering (General)
0210 nano-technology
lcsh:TK1-9971
Subjects
Details
- ISSN :
- 19961944
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Materials
- Accession number :
- edsair.doi.dedup.....0538b1ab2a8792c6227fac30a507c113
- Full Text :
- https://doi.org/10.3390/ma14040896