Back to Search Start Over

Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations

Authors :
Jean-Marc Delort
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
ANR-13-BS01-0010,ANAÉ,Analyse asymptotique des Equations aux dérivées partielles d'évolution(2013)
Delort, Jean-Marc
Blanc 2013 - Analyse asymptotique des Equations aux dérivées partielles d'évolution - - ANAÉ2013 - ANR-13-BS01-0010 - Blanc 2013 - VALID
Source :
Annales de l'Institut Fourier, Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2016
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

68 pages. This is the final version to be published in Annales de l'Institut Fourier. Some misprints have been corrected and the bibliography has been updated.; The method of Klainerman vector fields plays an essential role in the study of global existence of solutions of nonlinear hyperbolic PDEs, with small, smooth, decaying Cauchy data. Nevertheless, it turns out that some equations of physics, like the one dimensional water waves equation with finite depth, do not possess any Klainerman vector field. The goal of this paper is to design, on a model equation, a substitute to the Klainerman vector fields method, that allows one to get global existence results, even in the critical case for which linear scattering does not hold at infinity. The main idea is to use semiclassical pseudodifferential operators instead of vector fields, combined with microlocal normal forms, to reduce the nonlinearity to expressions for which a Leibniz rule holds for these operators.

Details

Language :
English
ISSN :
03730956 and 17775310
Database :
OpenAIRE
Journal :
Annales de l'Institut Fourier, Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2016
Accession number :
edsair.doi.dedup.....04f36cc6f607bbc8d494d99031597ad9