Back to Search Start Over

Demonstration of horizontal gene transfer from genetically engineered Thermosynechococcus elongatus BP1 to wild-type E. coli DH5α

Authors :
Lesley H. Greene
Jason P. Agola
James Weifu Lee
Cherrelle L. Barnes
Sana Sherazi
Thu H. Nguyen
Source :
Gene. 704:49-58
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Synthetic biology with genetically engineered (GE) cyanobacteria has the potential to produce valuable products such as biofuels. However, it is also essential to assess the potential risks of synthetic biology technology before it can be widely used. In order to address key concerns posed by the application of synthetic biology to microorganisms, studies were designed to monitor the horizontal transfer of engineered genes from GE cyanobacteria Thermosynechococcus elongatus BP1 to Escherichia coli through co-incubation. The results of these experiments demonstrated that the genetically engineered DNA construct containing alcohol producing genes and kanamycin resistance can be horizontally transferred from GE T. elongatus BP1 to wild-type E. coli following two days of liquid co-culturing. The rapid and facile transfer of foreign genes, which include antibiotic resistance, between bacterial communities signifies the need to continue to deepen our understanding of the process of horizontal gene transfer, chromosomal integration as well as further biosafety-oriented research efforts. In the era of synthetic biology, the natural microbial process for sharing genetic material will also significantly impact risk assessments, containment approaches and further policy development.

Details

ISSN :
03781119
Volume :
704
Database :
OpenAIRE
Journal :
Gene
Accession number :
edsair.doi.dedup.....04caf7a10d6731531c665ce9f9652413
Full Text :
https://doi.org/10.1016/j.gene.2019.03.014