Back to Search Start Over

TNP-AMP Binding to the Sarcoplasmic Reticulum Ca2+-ATPase Studied by Infrared Spectroscopy

Authors :
Andreas Barth
Man Liu
Source :
Biophysical Journal. 85:3262-3270
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

Infrared spectroscopy was used to monitor the conformational change of 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) binding to the sarcoplasmic reticulum Ca(2+)-ATPase. TNP-AMP binding was observed in a competition experiment: TNP-AMP is initially bound to the ATPase but is then replaced by beta,gamma-iminoadenosine 5'-triphosphate (AMPPNP) after AMPPNP release from P(3)-1-(2-nitrophenyl)ethyl AMPPNP (caged AMPPNP). The resulting infrared difference spectra are compared to those of AMPPNP binding to the free ATPase, to obtain a difference spectrum that reflects solely TNP-AMP binding to the Ca(2+)-ATPase. TNP-AMP used as an ATP analog in the crystal structure of the sarcoplasmic reticulum Ca(2+)-ATPase was found to induce a conformational change upon binding to the ATPase. It binds with a binding mode that is different from that of AMPPNP, ATP, and other tri- and diphosphate nucleotides: TNP-AMP binding causes partially opposite and smaller conformational changes compared to ATP or AMPPNP. The conformation of the TNP-AMP ATPase complex is more similar to that of the E1Ca(2) state than to that of the E1ATPCa(2) state. Regarding the use of infrared spectroscopy as a technique for ligand binding studies, our results show that infrared spectroscopy is able to distinguish different binding modes.

Details

ISSN :
00063495
Volume :
85
Database :
OpenAIRE
Journal :
Biophysical Journal
Accession number :
edsair.doi.dedup.....04a80e649a33ac395479f72c4eab243f