Back to Search Start Over

Quasi-interpolant operators in Bernstein basis

Authors :
S. Bouhiri
Ahmed Zidna
M. Lamnii
Abdelleh Lamnii
University Hassan 1st
Mohamed Ier University
Faculté des Sciences d'Oujda
Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM)
Université de Lorraine (UL)
Source :
Mathematics and Computers in Simulation, Mathematics and Computers in Simulation, Elsevier, 2020, ⟨10.1016/j.matcom.2020.07.001⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The aim of this paper is to present a family of polynomial quasi-interpolants in Bernstein basis. More precisely, we will combine the strong features of the polar forms and the symmetric polynomials to derive the coefficients of the quasi-interpolant in the Bernstein basis representation. We also derive a collection of spline quasi-interpolants that reproduce polynomial functions up to degree 2. Numerical examples support the theoretical results and show that the proposed scheme is simple and effective.

Details

Language :
English
ISSN :
03784754
Database :
OpenAIRE
Journal :
Mathematics and Computers in Simulation, Mathematics and Computers in Simulation, Elsevier, 2020, ⟨10.1016/j.matcom.2020.07.001⟩
Accession number :
edsair.doi.dedup.....0452d180a704c4bdd2ca41626db1f0ab
Full Text :
https://doi.org/10.1016/j.matcom.2020.07.001⟩