Back to Search
Start Over
Making sense of text: artificial intelligence-enabled content analysis
- Publication Year :
- 2020
- Publisher :
- Emerald, 2020.
-
Abstract
- Purpose The purpose of this paper is to introduce, apply and compare how artificial intelligence (AI), and specifically the IBM Watson system, can be used for content analysis in marketing research relative to manual and computer-aided (non-AI) approaches to content analysis. Design/methodology/approach To illustrate the use of AI-enabled content analysis, this paper examines the text of leadership speeches, content related to organizational brand. The process and results of using AI are compared to manual and computer-aided approaches by using three performance factors for content analysis: reliability, validity and efficiency. Findings Relative to manual and computer-aided approaches, AI-enabled content analysis provides clear advantages with high reliability, high validity and moderate efficiency. Research limitations/implications This paper offers three contributions. First, it highlights the continued importance of the content analysis research method, particularly with the explosive growth of natural language-based user-generated content. Second, it provides a road map of how to use AI-enabled content analysis. Third, it applies and compares AI-enabled content analysis to manual and computer-aided, using leadership speeches. Practical implications For each of the three approaches, nine steps are outlined and described to allow for replicability of this study. The advantages and disadvantages of using AI for content analysis are discussed. Together these are intended to motivate and guide researchers to apply and develop AI-enabled content analysis for research in marketing and other disciplines. Originality/value To the best of the authors’ knowledge, this paper is among the first to introduce, apply and compare how AI can be used for content analysis.
- Subjects :
- Marketing
Topic model
Computer science
Process (engineering)
business.industry
media_common.quotation_subject
05 social sciences
Originality
Content analysis
0502 economics and business
050211 marketing
Road map
Artificial intelligence
Marketing research
business
050203 business & management
Reliability (statistics)
Natural language
media_common
Subjects
Details
- Language :
- English
- ISSN :
- 03090566
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....0449fd1464c0f27f06c03a6f14be93b2