Back to Search Start Over

G-quadruplex RNA motifs influence gene expression in the malaria parasite Plasmodium falciparum

Authors :
Shiau Wei Liew
Chun Kit Kwok
Mubarak I. Umar
Lynne M. Harris
Ting-Fung Chan
Eugene Yui-Ching Chow
Catherine J. Merrick
Betty Y.-W. Chung
Franck Dumetz
Anders Boeck Jensen
Dumetz, Franck [0000-0001-8790-9986]
Chow, Eugene Yui-Ching [0000-0002-5575-6724]
Chan, Ting Fung [0000-0002-0489-3884]
Merrick, Catherine [0000-0001-7583-2176]
Apollo - University of Cambridge Repository
Merrick, Catherine J [0000-0001-7583-2176]
Source :
Nucleic Acids Research
Publication Year :
2021
Publisher :
Apollo - University of Cambridge Repository, 2021.

Abstract

Funder: Hong Kong PhD Fellowship Scheme<br />Funder: Hong Kong Special Administrative Region Government<br />G-quadruplexes are non-helical secondary structures that can fold in vivo in both DNA and RNA. In human cells, they can influence replication, transcription and telomere maintenance in DNA, or translation, transcript processing and stability of RNA. We have previously showed that G-quadruplexes are detectable in the DNA of the malaria parasite Plasmodium falciparum, despite a very highly A/T-biased genome with unusually few guanine-rich sequences. Here, we show that RNA G-quadruplexes can also form in P. falciparum RNA, using rG4-seq for transcriptome-wide structure-specific RNA probing. Many of the motifs, detected here via the rG4seeker pipeline, have non-canonical forms and would not be predicted by standard in silico algorithms. However, in vitro biophysical assays verified formation of non-canonical motifs. The G-quadruplexes in the P. falciparum transcriptome are frequently clustered in certain genes and associated with regions encoding low-complexity peptide repeats. They are overrepresented in particular classes of genes, notably those that encode PfEMP1 virulence factors, stress response genes and DNA binding proteins. In vitro translation experiments and in vivo measures of translation efficiency showed that G-quadruplexes can influence the translation of P. falciparum mRNAs. Thus, the G-quadruplex is a novel player in post-transcriptional regulation of gene expression in this major human pathogen.

Details

Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....0428c105567ff7f48ce0bdc16c93410b
Full Text :
https://doi.org/10.17863/cam.77179