Back to Search Start Over

Adaptive metamorphic testing with contextual bandits

Authors :
Helge Spieker
Arnaud Gotlieb
Source :
Journal of Systems and Software. 165:110574
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Metamorphic Testing is a software testing paradigm which aims at using necessary properties of a system under test, called metamorphic relations, to either check its expected outputs, or to generate new test cases. Metamorphic Testing has been successful to test programs for which a full oracle is not available or to test programs for which there are uncertainties on expected outputs such as learning systems. In this article, we propose Adaptive Metamorphic Testing as a generalization of a simple yet powerful reinforcement learning technique, namely contextual bandits, to select one of the multiple metamorphic relations available for a program. By using contextual bandits, Adaptive Metamorphic Testing learns which metamorphic relations are likely to transform a source test case, such that it has higher chance to discover faults. We present experimental results over two major case studies in machine learning, namely image classification and object detection, and identify weaknesses and robustness boundaries. Adaptive Metamorphic Testing efficiently identifies weaknesses of the tested systems in context of the source test case.

Details

ISSN :
01641212
Volume :
165
Database :
OpenAIRE
Journal :
Journal of Systems and Software
Accession number :
edsair.doi.dedup.....03b76d34a7ad26dbf529076adecaaaf5