Back to Search Start Over

Robust Access Point Clustering in Edge Computing Resource Optimization

Authors :
Nour-El-Houda Yellas
Selma Boumerdassi
Alberto Ceselli
Bilal Maaz
Stefano Secci
CEDRIC. Réseaux et Objets Connectés (CEDRIC - ROC)
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Università degli Studi di Milano = University of Milan (UNIMI)
AMI-5G ENE5AI (plan de relance)
ANR-18-CE25-0011,CANCAN,Adaptation basée sur le contenu et le contexte dans les réseaux mobiles(2018)
European Project: 101015922,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),AI@EDGE(2021)
Source :
IEEE Transactions on Network and Service Management, IEEE Transactions on Network and Service Management, IEEE, 2022, 19 (3), pp.2738-2750. ⟨10.1109/TNSM.2022.3186856⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and heterogeneous requirements on both latency and bandwidth. In this work, we tackle the problem of clustering access points in MEC environments, introducing a set of clustering models to be deployed at the pre-provisioning phase. We go through extensive simulations on real-world traffic demands to evaluate the performance of the proposed solutions. In addition, we show how MEC hosts capacity violation can be decreased when integrating access points clustering into the orchestration model, by investigating on solution accuracy when applied on heldout users traffic demands. The obtained results show that our approach outperforms two state-of-the-art algorithms, reducing both memory usage and execution time, by 46% and 50%, respectively, in comparison to a baseline algorithm. It surpasses the two methods in gaining control over MEC hosts capacity usage for different maximum achieved occupancy levels on MEC hosts.

Details

ISSN :
23737379 and 19324537
Volume :
19
Database :
OpenAIRE
Journal :
IEEE Transactions on Network and Service Management
Accession number :
edsair.doi.dedup.....034ecd05a1cfdca272bdf6ff9e671251
Full Text :
https://doi.org/10.1109/tnsm.2022.3186856