Back to Search Start Over

Morphology-Controlled Fabrication of Large-Scale Dendritic Silver Nanostructures for Catalysis and SERS Applications

Authors :
Xin Luo
Zhi-Wen Li
Jing-Han Xu
Jiang Zhong
Zong-Lin Li
Guang-Ling Cheng
Shan Liang
Zi-Qiang Cheng
Yan-Hong Zhou
Rui Yao
Source :
Nanoscale Research Letters, Vol 14, Iss 1, Pp 1-7 (2019), Nanoscale Research Letters
Publication Year :
2019
Publisher :
SpringerOpen, 2019.

Abstract

Highly branched metallic nanostructures, which possess a large amount of catalyst active sites and surface-enhanced Raman scattering (SERS) hot spots owing to their large surface areas, multi-level branches, corners, and edges, have shown potential in various applications including catalysis and SERS. In this study, well-defined dendritic silver (Ag) nanostructures were prepared by a facile and controllable electrochemical deposition strategy. The morphology of Ag nanostructures is controlled by regulating electrodeposition time and concentration of AgNO3 in the electrolyte solution. Compared to conventional Ag nanoparticle films, dendritic Ag nanostructures exhibited larger SERS enhancement ascribed to the numerous hot spots exist in the nanogaps of parallel and vertically stacked multilayer Ag dendrites. In addition, the prepared dendritic Ag nanostructures show 3.2-fold higher catalytic activity towards the reduction of 4-nitrophenol (4-NP) by NaBH4 than the Ag nanoparticle films. The results indicate that the dendritic Ag nanostructures represent a unique bifunctional nanostructure that serves as both efficient catalysts and excellent SERS substrates, which may be further employed as a nanoreactor for in situ investigation and real-time monitoring of catalytic reactions by SERS technique.

Details

Language :
English
ISSN :
19317573
Volume :
14
Issue :
1
Database :
OpenAIRE
Journal :
Nanoscale Research Letters
Accession number :
edsair.doi.dedup.....031c70aea1faec5be1dbb7dbe05c5e06
Full Text :
https://doi.org/10.1186/s11671-019-2923-0