Back to Search Start Over

ESTOCADA: Towards Scalable Polystore Systems

Authors :
Bogdan Cautis
M. Latrache
Y. Yang
Rana Alotaibi
Ioana Manolescu
Alin Deutsch
Rich Data Analytics at Cloud Scale (CEDAR)
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris-Saclay
University of California [San Diego] (UC San Diego)
University of California (UC)
University of California
Source :
Proceedings of the VLDB Endowment (PVLDB), Proceedings of the VLDB Endowment (PVLDB), 2020, 13 (12), pp.2949-2952. ⟨10.14778/3415478.3415516⟩, Proceedings of the VLDB Endowment (PVLDB), VLDB Endowment, 2020, 13 (12), pp.2949-2952. ⟨10.14778/3415478.3415516⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Big data applications increasingly involve diverse datasets, conforming to different data models. Such datasets are routinely hosted in heterogeneous stores, each capable of handling one or a few data models, and each efficient for some, but not all, kinds of data processing. Systems capable of exploiting disparate data in this fashion are usually termed polystores. A current limitation of polystores is that applications are written taking into account which part of the data is stored in which store and how. This fails to take advantage of ( i ) possible redundancy, when the same data may be accessible (with different performance) from distinct data stores; ( ii ) previous query results (in the style of materialized views), which may be available in the stores. We propose to demonstrate ESTOCADA [4], a novel approach that can be used in a polystore setting to transparently enable each query to benefit from the best combination of stored data and available processing capabilities. The system leverages recent advances in the area of view-based query rewriting under constraints, which we use to describe the various data models and stored data.

Details

Language :
English
ISSN :
21508097
Database :
OpenAIRE
Journal :
Proceedings of the VLDB Endowment (PVLDB), Proceedings of the VLDB Endowment (PVLDB), 2020, 13 (12), pp.2949-2952. ⟨10.14778/3415478.3415516⟩, Proceedings of the VLDB Endowment (PVLDB), VLDB Endowment, 2020, 13 (12), pp.2949-2952. ⟨10.14778/3415478.3415516⟩
Accession number :
edsair.doi.dedup.....02eb126db300e23ccff003c59bb3746d