Back to Search Start Over

Análisis Envolvente de Datos (DEA) para medir el desempeño relativo basado en indicadores de una red de abastecimiento con Logística Inversa

Authors :
César David Ardila Gamboa
Frank Alexander Ballesteros Riveros
Source :
Inge-Cuc, Vol 14, Iss 2, Pp 137-146 (2018), INGE CUC, REDICUC-Repositorio CUC, Corporación Universidad de la Costa, instacron:Corporación Universidad de la Costa
Publication Year :
2018
Publisher :
Universidad de la Costa, 2018.

Abstract

Introduction− Data Envelopment Analysis (DEA) is used to measure the relative performance of a series of distribution centers (DCs), using key indicators based on reverse logistics for a company that produces electric and electronic supplies in Colombia.Objective−The aim is to measure the relative perfor-mance of distribution centers based on Key Performance Indicators (KPI) from a supply network with reverse logistics.Methodology−A DEA model is applied through 5 steps: KPIs selection; Data collection for all 18 DCs in the net-work; Build and run the DEA model; Identify the DCs that will be the focus of improvement; Analyze the DCs that restrict or diminish the total performance of the system.Results− KPIs are defined, data is collected and KPI’s for each DCs are presented. The DEA model is run and the relative efficiencies for each DCs are determined. A frontier analysis is made and DCs that limit or reduce the performance of the system are analyzed to find options for improving the system.Conclusions−Reverse logistics, brings numerous ad-vantages for companies. The analysis of the indicators allows logistics managers involved to make relevant deci-sions for higher performance. The DEA model identifies which DCs have a relative superior and inferior perfor-mance, making it easier to make informed decisions to change, increase or decrease resources, and activities or apply best practices that optimize the performance of the network. Introducción− El análisis envolvente de datos (DEA), se usa para medir el desempeño relativo de una serie de centros de distribución (DCs), utilizando indicadores clave basados en logística inversa para una empresa que produce suministros eléctricos y electrónicos en Colombia.Objetivo− Medir el rendimiento relativo de los centros de distribución en función de indicadores clave (KPI) de una red de abastecimiento con logística inversa.Metodología− Se aplica un modelo DEA a través de 5 pasos: Selección de KPIs; Recopilación de datos para los 18 DCs en la red de distribución; Se construye y ejecuta el modelo DEA; Identificar los DCs que serán el foco de la mejora; Analizar los DCs que restringen o disminuyen el rendimiento total del sistema.Resultados− Inicialmente se definen KPI, a partir de los datos recolectados y se presentan los KPI para cada DCs. Se ejecuta el modelo DEA y se determinan las eficiencias relativas para cada DCs. Posteriormente, se realiza un análisis de la frontera y se analizan los DCs que limitan o reducen el rendimiento del sistema en busca de opciones para mejorar el sistema.Conclusiones− La logística inversa, trae numerosas ven-tajas para las empresas. El análisis de los indicadores permite a los gerentes de logística tomar decisiones rel-evantes para mejorar el desempeño del sistema. El mod-elo DEA identifica a los DCs que presentan rendimientos relativamente superiores e inferiores; lo cual facilita la toma de decisiones informadas para cambiar, aumentar o disminuir los recursos y las actividades, o aplicar las mejores prácticas que optimicen el rendimiento de la red.

Details

Language :
English
ISSN :
23824700 and 01226517
Volume :
14
Issue :
2
Database :
OpenAIRE
Journal :
Inge-Cuc
Accession number :
edsair.doi.dedup.....026069038306d475855237ea2743460d