Back to Search Start Over

Intrinsic Functional Connectivity Resembles Cortical Architecture at Various Levels of Isoflurane Anesthesia

Authors :
Edgar Galindo-Leon
Andreas K. Engel
Claus C. Hilgetag
Felix Fischer
Gerhard Engler
Florian Pieper
Source :
Cerebral Cortex (New York, NY)
Publication Year :
2018
Publisher :
Oxford University Press (OUP), 2018.

Abstract

Cortical single neuron activity and local field potential patterns change at different depths of general anesthesia. Here, we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from temporo-parieto-occipital cortex of 6 ferrets at various levels of isoflurane/nitrous oxide anesthesia and determined functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied, at the deepest level, by the emergence of burst-suppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalization of functional connectivity to the distribution of correlation coefficients showed that the topographical patterns remained similar across depths of anesthesia, reflecting the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.

Details

ISSN :
14602199 and 10473211
Volume :
28
Database :
OpenAIRE
Journal :
Cerebral Cortex
Accession number :
edsair.doi.dedup.....025d49d569f8357b4c63cb51c7eece42
Full Text :
https://doi.org/10.1093/cercor/bhy114