Back to Search
Start Over
Critical behavior, magnetic and magnetocaloric properties of meltspun Ni50Mn35Sn15 ribbons
- Source :
- © Journal of Alloys and Compounds, 2018, vol. 735, p. 1662-1672, Articles publicats (D-F), DUGiDocs – Universitat de Girona, instname, Journal of Alloys and Compounds, Journal of Alloys and Compounds, Elsevier, 2018, 735, pp.1662-1672. ⟨10.1016/j.jallcom.2017.11.277⟩
- Publication Year :
- 2020
- Publisher :
- Elsevier, 2020.
-
Abstract
- Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms= 147.4 K, Mf= 133.7 K, As= 155 K and Af= 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC= 310 K and a first order martensitic transition at TM= 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TCare of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15alloy is a good candidate for magnetic refrigeration near room temperature This work has been supported by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, the PHC-Maghreb 15 MAG07 program, the Spanish MINECO projects MAT2013-47231-C2-2-P and MAT2016-75967-P and the Erasmus+KA107 STA 2015-2017 program
- Subjects :
- Transition metals -- Alloys
Materials science
Estany -- Propietats magnètiques
02 engineering and technology
Microestructura
7. Clean energy
01 natural sciences
Metalls de transició -- Aliatges
Differential scanning calorimetry
0103 physical sciences
Materials Chemistry
Magnetic refrigeration
Manganès -- Propietats magnètiques
Níquel -- Propietats magnètiques
Nickel -- Magnetic properties
Microstructure
ComputingMilieux_MISCELLANEOUS
010302 applied physics
Austenite
Condensed matter physics
Mechanical Engineering
Metals and Alloys
Thermomagnetic convection
021001 nanoscience & nanotechnology
Magnetic field
Tin -- Magnetic properties
Mechanics of Materials
Diffusionless transformation
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Curie temperature
Manganese -- Magnetic properties
0210 nano-technology
Critical exponent
Subjects
Details
- Language :
- English
- ISSN :
- 09258388
- Database :
- OpenAIRE
- Journal :
- © Journal of Alloys and Compounds, 2018, vol. 735, p. 1662-1672, Articles publicats (D-F), DUGiDocs – Universitat de Girona, instname, Journal of Alloys and Compounds, Journal of Alloys and Compounds, Elsevier, 2018, 735, pp.1662-1672. ⟨10.1016/j.jallcom.2017.11.277⟩
- Accession number :
- edsair.doi.dedup.....02464dc9e0478706572a557a577e3993
- Full Text :
- https://doi.org/10.1016/j.jallcom.2017.11.277⟩