Back to Search
Start Over
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
- Source :
- ResearcherID, Phys.Rev.D, Phys.Rev.D, 2018, 98 (4), pp.043526. ⟨10.1103/PhysRevD.98.043526⟩, INSPIRE-HEP, 2018, ' Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing ', Physical Review D, particles, fields, gravitation, and cosmology, vol. 98, no. 4, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, NASA Astrophysics Data System, Dark Energy Survey Collaboration 2018, ' Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing ', Physical Review D-Particles, Fields, Gravitation and Cosmology, vol. 98, no. 4, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, Dark Energy Survey Collaboration, Avila Perez, S J, Bacon, D, Capozzi, D, Crittenden, R, Nichol, B, Percival, W & Thomas, D 2018, ' Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing ', Physical Review D, vol. 98, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, Physical Review D, Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, Web of Science
-
Abstract
- We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $\Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $\Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $\times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $\Omega_m = 0.264^{+0.032}_{-0.019}$ for $\Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $\Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $\Omega_m$ are lower than the central values from Planck ...<br />Comment: Matches published version. Results essentially unchanged, except updated covariance matrix leads to improved chi^2 (colored text removed)
- Subjects :
- Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Cosmic microwave background
FOS: Physical sciences
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
Cosmology
symbols.namesake
0103 physical sciences
Planck
010303 astronomy & astrophysics
Weak gravitational lensing
STFC
ResearchInstitutes_Networks_Beacons/MERI
QC
Physics
010308 nuclear & particles physics
Astronomy
RCUK
Manchester Environmental Research Institute
Redshift
Galaxy
symbols
Dark energy
Neutrino
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- ISSN :
- 24700010, 00358711, and 00046361
- Database :
- OpenAIRE
- Journal :
- ResearcherID, Phys.Rev.D, Phys.Rev.D, 2018, 98 (4), pp.043526. ⟨10.1103/PhysRevD.98.043526⟩, INSPIRE-HEP, 2018, ' Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing ', Physical Review D, particles, fields, gravitation, and cosmology, vol. 98, no. 4, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, NASA Astrophysics Data System, Dark Energy Survey Collaboration 2018, ' Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing ', Physical Review D-Particles, Fields, Gravitation and Cosmology, vol. 98, no. 4, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, Dark Energy Survey Collaboration, Avila Perez, S J, Bacon, D, Capozzi, D, Crittenden, R, Nichol, B, Percival, W & Thomas, D 2018, ' Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing ', Physical Review D, vol. 98, 043526 . https://doi.org/10.1103/PhysRevD.98.043526, Physical Review D, Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, Web of Science
- Accession number :
- edsair.doi.dedup.....022f8470b3e695517228251e9ab9a816
- Full Text :
- https://doi.org/10.1103/PhysRevD.98.043526⟩