Back to Search
Start Over
ON DIGIT PATTERNS IN EXPANSIONS OF RATIONAL NUMBERS WITH PRIME DENOMINATOR
- Source :
- Quarterly Journal of Mathematics, Quarterly Journal of Mathematics, Oxford University Press (OUP), 2013, 64 (4), pp.1231-1238. ⟨10.1093/qmath/has027⟩
- Publication Year :
- 2012
- Publisher :
- Oxford University Press (OUP), 2012.
-
Abstract
- International audience; We show that, for any fixed $\varepsilon > 0$ and almost all primes $p$, the $g$-ary expansion of any fraction $m/p$ with $\gcd(m,p) = 1$ contains almost all $g$-ary strings of length $k < (5/24 - \varepsilon) \log_g p$. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all $g$-ary strings of length $k < (41/504 -\varepsilon) \log_g p$ occur in the $g$-ary expansion of $m/p$.
- Subjects :
- Discrete mathematics
Rational number
Mathematics - Number Theory
General Mathematics
010102 general mathematics
0102 computer and information sciences
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Numerical digit
Prime (order theory)
010201 computation theory & mathematics
FOS: Mathematics
Fraction (mathematics)
Number Theory (math.NT)
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 14643847 and 00335606
- Volume :
- 64
- Database :
- OpenAIRE
- Journal :
- The Quarterly Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....022aed26553ff6b1cad82a61b5a2eaf5
- Full Text :
- https://doi.org/10.1093/qmath/has027