Back to Search Start Over

ON DIGIT PATTERNS IN EXPANSIONS OF RATIONAL NUMBERS WITH PRIME DENOMINATOR

Authors :
Igor E. Shparlinski
Wolfgang Steiner
Department of computing (Department of computing)
Macquarie University
Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Quarterly Journal of Mathematics, Quarterly Journal of Mathematics, Oxford University Press (OUP), 2013, 64 (4), pp.1231-1238. ⟨10.1093/qmath/has027⟩
Publication Year :
2012
Publisher :
Oxford University Press (OUP), 2012.

Abstract

International audience; We show that, for any fixed $\varepsilon > 0$ and almost all primes $p$, the $g$-ary expansion of any fraction $m/p$ with $\gcd(m,p) = 1$ contains almost all $g$-ary strings of length $k < (5/24 - \varepsilon) \log_g p$. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all $g$-ary strings of length $k < (41/504 -\varepsilon) \log_g p$ occur in the $g$-ary expansion of $m/p$.

Details

ISSN :
14643847 and 00335606
Volume :
64
Database :
OpenAIRE
Journal :
The Quarterly Journal of Mathematics
Accession number :
edsair.doi.dedup.....022aed26553ff6b1cad82a61b5a2eaf5
Full Text :
https://doi.org/10.1093/qmath/has027