Back to Search
Start Over
Rectifiability of RCD(K,N) spaces via δ-splitting maps
- Source :
- Annales Fennici Mathematici
- Publication Year :
- 2020
- Publisher :
- Suomalainen Tiedeakatemia (Finnish Academy of Science and Letters), 2020.
-
Abstract
- In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed
- Subjects :
- Pure mathematics
Tangent cone
Order (ring theory)
Differential calculus
RCD space
Articles
Mathematical proof
metriset avaruudet
Measure (mathematics)
matemaattinen analyysi
differentiaaligeometria
Convergence (routing)
Metric (mathematics)
Mathematics::Metric Geometry
Rectifiability
Essential dimension
Mathematics
tangent cone
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Annales Fennici Mathematici
- Accession number :
- edsair.doi.dedup.....022590ee52271edede4f5beff97fab01