Back to Search
Start Over
Special Invited Paper: Geodesics And Spanning Tees For Euclidean First-Passage Percolaton
- Source :
- Ann. Probab. 29, no. 2 (2001), 577-623
- Publication Year :
- 2001
- Publisher :
- The Institute of Mathematical Statistics, 2001.
-
Abstract
- The metric $D_{\alpha}(q,q')$ on the set $Q$ of particle locations of a homogeneous Poisson process on $\mathbb{R}^d$ , defined as the infimum of $(\sum_i |q_i - q_{i+1}|^{\alpha})^{1/\alpha}$ over sequences in $Q$ starting with $q$ and ending with $q'$ (where $|·|$ denotes Euclidean distance) has nontrivial geodesics when $\alpha>1$. The cases $1< \alpha
- Subjects :
- Statistics and Probability
Spanning tree
Geodesic
82D30
random surface
First passage percolation
Poisson process
Infimum and supremum
Euclidean distance
Combinatorics
random metric
firstpassage percolation
60K35
Lattice (order)
minimal spanning tree
shape theorem
Almost surely
combinatorial optimization
60G55
Statistics, Probability and Uncertainty
First-hitting-time model
geodesic
Mathematics
60F10
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Ann. Probab. 29, no. 2 (2001), 577-623
- Accession number :
- edsair.doi.dedup.....020dc84d490239d729c0a26262272bcc