Back to Search Start Over

The R-Enantiomer of Ketorolac Delays Mammary Tumor Development in Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) Mice

Authors :
Dayna Dominguez
Angela Wandinger-Ness
Martha M. Grimes
Eric R. Prossnitz
Amanda S. Peretti
Helen J. Hathaway
Donna F. Kusewitt
Melanie Rivera
Laurie G. Hudson
Source :
The American Journal of Pathology. 188:515-524
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Epidemiologic studies report improved breast cancer survival in women who receive ketorolac (Toradol) for postoperative pain relief compared with other analgesic agents. Ketorolac is a racemic drug. The S-enantiomer inhibits cyclooxygenases; R-ketorolac is a selective inhibitor of the small GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), which are signaling molecules up-regulated during breast cancer progression and metastasis. The goal of this study was to determine whether R-ketorolac altered breast cancer development in the mouse mammary tumor virus-polyoma middle T-antigen model. Mice were administered ketorolac orally at 1 mg/kg twice daily to approximate the typical human dose. Mammary glands were analyzed for tumor number and immunohistochemical markers of proliferation and differentiation. R-ketorolac treatment significantly reduced mammary epithelial proliferation, based on Ki67 staining, and suppressed tumor development. Proliferative mammary epithelium from R-ketorolac–treated mice displayed greater differentiation, based on significantly higher total E-cadherin and decreased keratin 5 staining than epithelium of placebo-treated mice. No differences were detected in estrogen receptor, progesterone receptor, β-catenin, or vimentin expression between placebo and R-ketorolac treatment groups. These findings indicate that R-ketorolac treatment slows tumor progression in an aggressive model of breast cancer. R-ketorolac may thus represent a novel therapeutic approach for breast cancer prevention or treatment based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor.

Details

ISSN :
00029440
Volume :
188
Database :
OpenAIRE
Journal :
The American Journal of Pathology
Accession number :
edsair.doi.dedup.....01f58bd470530c77c23e9df590d39d7d