Back to Search Start Over

PEO infiltration of porous garnet-type lithium-conducting solid electrolyte thin films

Authors :
Oliver Clemens
Vanita Vanita
Aamir Iqbal Waidha
Source :
Ceramics, Volume 4, Issue 3, Pages 31-436, Ceramics, Vol 4, Iss 31, Pp 421-436 (2021)
Publication Year :
2023
Publisher :
Universität Stuttgart, 2023.

Abstract

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10-7 S cm-1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.<br />Deutsche Forschungsgemeinschaft

Details

Language :
English
Database :
OpenAIRE
Journal :
Ceramics, Volume 4, Issue 3, Pages 31-436, Ceramics, Vol 4, Iss 31, Pp 421-436 (2021)
Accession number :
edsair.doi.dedup.....01e8c388be415fa8cfae8d69cfc6439a
Full Text :
https://doi.org/10.18419/opus-13210