Back to Search
Start Over
Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus
- Source :
- JCI Insight. 3
- Publication Year :
- 2018
- Publisher :
- American Society for Clinical Investigation, 2018.
-
Abstract
- BACKGROUND. Systemic lupus erythematosus (SLE) is associated with enhanced risk of atherosclerotic cardiovascular disease not explained by Framingham risk score (FRS). Immune dysregulation associated to a distinct subset of lupus proinflammatory neutrophils (low density granulocytes; LDGs) may play key roles in conferring enhanced CV risk. This study assessed if lupus LDGs are associated with in vivo vascular dysfunction and inflammation and coronary plaque. METHODS. SLE subjects and healthy controls underwent multimodal phenotyping of vascular disease by quantifying vascular inflammation (18F-fluorodeoxyglucose–PET/CT [18F-FDG–PET/CT]), arterial dysfunction (EndoPAT and cardio-ankle vascular index), and coronary plaque burden (coronary CT angiography). LDGs were quantified by flow cytometry. Cholesterol efflux capacity was measured in high-density lipoprotein–exposed (HDL-exposed) radioactively labeled cell lines. Whole blood RNA sequencing was performed to assess associations between transcriptomic profiles and vascular phenotype. RESULTS. Vascular inflammation, arterial stiffness, and noncalcified plaque burden (NCB) were increased in SLE compared with controls even after adjustment for traditional risk factors. In SLE, NCB directly associated with LDGs and associated negatively with cholesterol efflux capacity in fully adjusted models. A neutrophil gene signature reflective of the most upregulated genes in lupus LDGs associated with vascular inflammation and NCB. CONCLUSION. Individuals with SLE demonstrate vascular inflammation, arterial dysfunction, and NCB, which may explain the higher reported risk for acute coronary syndromes. The association of LDGs and neutrophil genes with vascular disease supports the hypothesis that distinct neutrophil subsets contribute to vascular damage and unstable coronary plaque in SLE. Results also support previous observations that neutrophils may disrupt HDL function and thereby promote atherogenesis. TRIAL REGISTRATION. Clinicaltrials.gov {"type":"clinical-trial","attrs":{"text":"NCT00001372","term_id":"NCT00001372"}}NCT00001372 FUNDING. Intramural Research Program NIAMS/NIH (ZIA {"type":"entrez-nucleotide","attrs":{"text":"AR041199","term_id":"5961695","term_text":"AR041199"}}AR041199) and Lupus Research Institute
- Subjects :
- Adult
Male
0301 basic medicine
Neutrophils
Inflammation
Coronary Artery Disease
030204 cardiovascular system & hematology
Coronary Angiography
medicine.disease_cause
Autoimmunity
03 medical and health sciences
0302 clinical medicine
immune system diseases
Risk Factors
Positron Emission Tomography Computed Tomography
medicine
Humans
Lupus Erythematosus, Systemic
skin and connective tissue diseases
Coronary atherosclerosis
Whole blood
Framingham Risk Score
Systemic lupus erythematosus
Sequence Analysis, RNA
Vascular disease
business.industry
General Medicine
Middle Aged
Immune dysregulation
Atherosclerosis
medicine.disease
Healthy Volunteers
Cross-Sectional Studies
Phenotype
030104 developmental biology
Immunology
Female
Clinical Medicine
medicine.symptom
business
Subjects
Details
- ISSN :
- 23793708
- Volume :
- 3
- Database :
- OpenAIRE
- Journal :
- JCI Insight
- Accession number :
- edsair.doi.dedup.....01b49b59fd603ea3698e1b13caabbdfe
- Full Text :
- https://doi.org/10.1172/jci.insight.99276