Back to Search Start Over

Spreading dynamics of a precursor film of nanodrops on total wetting surfaces

Authors :
Cyuan Jhang Wu
Yu Jane Sheng
Yu Hsuan Weng
Heng Kwong Tsao
Source :
Phys. Chem. Chem. Phys.. 19:27786-27794
Publication Year :
2017
Publisher :
Royal Society of Chemistry (RSC), 2017.

Abstract

The spreading dynamics of a nanodrop on a total wetting surface is explored by many-body dissipative particle dynamics. Both smooth and rough surfaces with various spreading coefficients (S) are considered. The evolution of the spreading film is mainly characterized by the radius of the wetting area (Rp) and the apparent base radius (Rb) and the contact angle (θ) of the spherical cap. The difference between Rp and Rb reveals the presence of the precursor film. The dynamic behavior can be described by the power law: Rp ∼ tm, Rb ∼ tn, and θ ∼ t−α. Regardless of the surface roughness, the exponents n = 0.1 and α = 0.3 agree with Tanner's law and are independent of the spreading coefficient. However, the expansion of the precursor film depends on the surface roughness and the spreading coefficient. As the cavity size corresponding to the roughness decreases or S increases, the exponent m can rise approximately from 0.1 to 0.2. That is, the spontaneous expansion is driven by the spreading coefficient but impeded by the surface roughness. Forced spreading of a nanodrop on a smooth surface leads to anisotropic expansion. The length along the force direction L(t) follows the power law L ∝ tp and the exponent p ≈ 0.274 is insensitive to S. Nonetheless, the length along the direction perpendicular to the force direction is dominated by the spontaneous spreading. Contact line pinning of the rear end is only observed for intermediate forces.

Details

ISSN :
14639084 and 14639076
Volume :
19
Database :
OpenAIRE
Journal :
Phys. Chem. Chem. Phys.
Accession number :
edsair.doi.dedup.....01a25e8c0101966e019611477904de19