Back to Search Start Over

Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability

Authors :
Michael Di Loreto
Wilfrid Marquis-Favre
Said Aoues
Damien Eberard
Ampère, Département Méthodes pour l'Ingénierie des Systèmes (MIS)
Ampère (AMPERE)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Systems and Control Letters, Systems and Control Letters, Elsevier, 2017, 110, pp.9-14. ⟨10.1016/j.sysconle.2017.10.003⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; In this paper a passive integrator dedicated to input/output Hamiltonian systems approximation is presented. In a first step, a discrete Hamiltonian framework endowed with a Lie derivative-like formula is introduced. It is shown that the discrete dynamics encodes energy conservation and passivity. Addition- ally, the characterization of the discrete dynamics in terms of Dirac structure is shown to be invariant by interconnection. The class is thus composable: networked systems belong to the class. In a second step, the discrete dynamics is considered as a one-step integration method. The method is shown to be convergent and provides a discrete-time approximation of an input/output Hamiltonian system. Accordingly, the discrete dynamics inherits intrinsic energetic characteristics (storage function and dissipation rate) from the original system. The method is thus tagged as passive integrator. As an illustration, the closed-loop behavior of interconnected subsystems and the stabilization of a rigid body spinning around its center of mass are presented.

Details

Language :
English
ISSN :
01676911 and 18727956
Database :
OpenAIRE
Journal :
Systems and Control Letters, Systems and Control Letters, Elsevier, 2017, 110, pp.9-14. ⟨10.1016/j.sysconle.2017.10.003⟩
Accession number :
edsair.doi.dedup.....018a4b234abf38800fa7fca86bf3bd23
Full Text :
https://doi.org/10.1016/j.sysconle.2017.10.003⟩