Back to Search Start Over

HARMONIC MORPHISMS FROM EINSTEIN 4-MANIFOLDS TO RIEMANN SURFACES

Authors :
Marina Ville
Centre de Mathématiques Laurent Schwartz (CMLS)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Mathematics, International Journal of Mathematics, World Scientific Publishing, 2012, 14 (03), pp.327-337. ⟨10.1142/S0129167X0300179X⟩
Publication Year :
2003
Publisher :
World Scientific Pub Co Pte Lt, 2003.

Abstract

If M and N are Riemannian manifolds, a harmonic morphism f : M → N is a map which pulls back local harmonic functions on N to local harmonic functions on M. If M is an Einstein 4-manifold and N is a Riemann surface, John Wood showed that such an f is holomorphic w.r.t. some integrable complex Hermitian structure defined on M away from the singular points of f. In this paper we extend this complex structure to the entire manifold M. It follows that there are no non-constant harmonic morphisms from [Formula: see text] or [Formula: see text] to a Riemann surface. The proof relies heavily on the real analyticity of the whole situation. We conclude by an example of a non-constant harmonic morphism from [Formula: see text] to [Formula: see text].

Details

ISSN :
17936519 and 0129167X
Volume :
14
Database :
OpenAIRE
Journal :
International Journal of Mathematics
Accession number :
edsair.doi.dedup.....0183fed4a290220ddd1e31766359b2d8
Full Text :
https://doi.org/10.1142/s0129167x0300179x