Back to Search
Start Over
HARMONIC MORPHISMS FROM EINSTEIN 4-MANIFOLDS TO RIEMANN SURFACES
- Source :
- International Journal of Mathematics, International Journal of Mathematics, World Scientific Publishing, 2012, 14 (03), pp.327-337. ⟨10.1142/S0129167X0300179X⟩
- Publication Year :
- 2003
- Publisher :
- World Scientific Pub Co Pte Lt, 2003.
-
Abstract
- If M and N are Riemannian manifolds, a harmonic morphism f : M → N is a map which pulls back local harmonic functions on N to local harmonic functions on M. If M is an Einstein 4-manifold and N is a Riemann surface, John Wood showed that such an f is holomorphic w.r.t. some integrable complex Hermitian structure defined on M away from the singular points of f. In this paper we extend this complex structure to the entire manifold M. It follows that there are no non-constant harmonic morphisms from [Formula: see text] or [Formula: see text] to a Riemann surface. The proof relies heavily on the real analyticity of the whole situation. We conclude by an example of a non-constant harmonic morphism from [Formula: see text] to [Formula: see text].
- Subjects :
- Harmonic coordinates
Pure mathematics
General Mathematics
Holomorphic function
Harmonic (mathematics)
Hermitian–Einstein
01 natural sciences
symbols.namesake
Morphism
0103 physical sciences
0101 mathematics
Mathematics
Mathematics::Complex Variables
Superminimal
010308 nuclear & particles physics
Riemann surface
010102 general mathematics
Mathematical analysis
Harmonic maps
Harmonic map
Real analyticity
16. Peace & justice
Manifold
MSC : 53C25
53C42
58E20
32L07
Harmonic function
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symbols
Subjects
Details
- ISSN :
- 17936519 and 0129167X
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- International Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....0183fed4a290220ddd1e31766359b2d8
- Full Text :
- https://doi.org/10.1142/s0129167x0300179x