Back to Search Start Over

Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment

Authors :
Nako Maishi
Yasuhiro Hida
Alam Mohammad Towfik
Nobuo Inoue
Kosuke Akiyama
Masanobu Shindoh
Noritaka Ohga
Kyoko Hida
Miyako Kondoh
Source :
PLoS ONE, Vol 8, Iss 11, p e80349 (2013), PLoS ONE
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, > 30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
11
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....016781006f048213ed56203e48d48eca