Back to Search
Start Over
Ubiquitin-Specific Protease 29 Exacerbates Cerebral Ischemia-Reperfusion Injury in Mice
- Source :
- Oxidative Medicine and Cellular Longevity, Oxidative Medicine and Cellular Longevity, Vol 2021 (2021)
- Publication Year :
- 2021
- Publisher :
- Hindawi, 2021.
-
Abstract
- Oxidative stress and apoptosis contribute to the progression of cerebral ischemia/reperfusion (I/R) injury. Ubiquitin-specific protease 29 (USP29) is abundantly expressed in the brain and plays critical roles in regulating oxidative stress and cell apoptosis. The purpose of the present study is to investigate the role and underlying mechanisms of USP29 in cerebral I/R injury. Neuron-specific USP29 knockout mice were generated and subjected to cerebral I/R surgery. For USP29 overexpression, mice were stereotactically injected with the adenoassociated virus serotype 9 vectors carrying USP29 for 4 weeks before cerebral I/R. And primary cortical neurons were isolated and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation to imitate cerebral I/R injury in vitro. USP29 expression was elevated in the brain and primary cortical neurons upon I/R injury. Neuron-specific USP29 knockout significantly diminished, whereas USP29 overexpression aggravated cerebral I/R-induced oxidative stress, apoptosis, and neurological dysfunction in mice. In addition, OGD/R-induced oxidative stress and neuronal apoptosis were also attenuated by USP29 silence but exacerbated by USP29 overexpression in vitro. Mechanistically, neuronal USP29 enhanced p53/miR-34a-mediated silent information regulator 1 downregulation and then promoted the acetylation and suppression of brain and muscle ARNT-like protein, thereby aggravating oxidative stress and apoptosis upon cerebral I/R injury. Our findings for the first time identify that USP29 upregulation during cerebral I/R may contribute to oxidative stress, neuronal apoptosis, and the progression of cerebral I/R injury and that inhibition of USP29 may help to develop novel therapeutic strategies to treat cerebral I/R injury.
- Subjects :
- Male
Aging
medicine.medical_specialty
Article Subject
Ischemia
Stimulation
Apoptosis
medicine.disease_cause
Biochemistry
Mice
Downregulation and upregulation
Internal medicine
medicine
Animals
Hypoxia
Mice, Knockout
Neurons
QH573-671
business.industry
Cell Biology
General Medicine
medicine.disease
In vitro
Oxidative Stress
Endocrinology
Glucose
Reperfusion Injury
Knockout mouse
Ubiquitin-Specific Proteases
business
Cytology
Reactive Oxygen Species
Reperfusion injury
Oxidative stress
Research Article
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 19420994 and 19420900
- Volume :
- 2021
- Database :
- OpenAIRE
- Journal :
- Oxidative Medicine and Cellular Longevity
- Accession number :
- edsair.doi.dedup.....00f5f5b86e52044dc98de3d5da965db9