Back to Search Start Over

Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation

Authors :
Anne-Claire Richard
Anne Rovelet-Lecrux
Dominique Campion
Sophie Coutant
Kilan Le Guennec
Jean-François Deleuze
Gaëlle Bougeard
Mathieu Castelain
Nathalie Drouot
Pascal Chambon
Stéphanie Vasseur
Thierry Frebourg
Jacqueline Bou
François Lecoquierre
Anne Boland
Géraldine Joly-Helas
Kévin Cassinari
Gaël Nicolas
Stéphane Rousseau
Steeve Fourneaux
Gwendoline Lienard
Edwige Kasper
Myriam Vezain
Pascale Saugier-Veber
Isabelle Tournier
Nathalie Le Meur
Olivier Quenez
Françoise Charbonnier
Emilie Bouvignies
Virginie N'Guyen-Viet
Stéphanie Baert-Desurmont
Sandrine Manase
Génomique et Médecine Personnalisée du Cancer et des Maladies Neuropsychiatriques (GPMCND)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)
Service de génétique [Rouen]
CHU Rouen
Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)
Centre National de Génotypage (CNG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre Hospitalier du Rouvray
PORCHET, Nathalie
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Source :
European Journal of Human Genetics, European Journal of Human Genetics, Nature Publishing Group, 2020, ⟨10.1038/s41431-020-0672-2⟩, European Journal of Human Genetics, 2020, ⟨10.1038/s41431-020-0672-2⟩, Eur J Hum Genet
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

International audience; The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow.

Details

ISSN :
14765438 and 10184813
Volume :
29
Database :
OpenAIRE
Journal :
European Journal of Human Genetics
Accession number :
edsair.doi.dedup.....00a6f3ab544384d46aa5c88805403359
Full Text :
https://doi.org/10.1038/s41431-020-0672-2