Back to Search Start Over

Molecular and heterogenized dinuclear Ir-Cp* water oxidation catalysts bearing EDTA or EDTMP as bridging and anchoring ligands

Authors :
Nade Kissimina
Roberto D’Amato
Leonardo Tensi
Alceo Macchioni
Massimiliano Valentini
Francesco Zaccaria
Chiara Domestici
Cristiano Zuccaccia
Ferdinando Costantino
Università degli Studi di Perugia = University of Perugia (UNIPG)
Ecole Superieure d'Ingenieurs de Rennes [Rennes] (ESIR)
Université de Rennes (UR)
Sultan Qaboos University (SQU)
20154X9ATP_004Universita degli Studi di PerugiaMIUR
Università degli Studi di Perugia (UNIPG)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Domestici, C.
Tensi, L.
Zaccaria, F.
Kissimina, N.
Valentini, M.
D'Amato, R.
Costantino, F.
Zuccaccia, C.
Macchioni, A.
Source :
Science Bulletin, Science Bulletin, 2020, 65 (19), pp.1614-1625. ⟨10.1016/j.scib.2020.06.015⟩, Science Bulletin, Elsevier, 2020, 65 (19), pp.1614-1625. ⟨10.1016/j.scib.2020.06.015⟩
Publication Year :
2020

Abstract

International audience; The development of efficient water oxidation catalysts (WOCs) is of key importance in order to drive sustainable reductive processes aimed at producing renewable fuels. Herein, two novel dinuclear complexes, [(Cp*Ir)2(μ-κ3-O,N,O-H4-EDTMP)] (Ir-H4-EDTMP, H4-EDTMP4− = ethylenediamine tetra(methylene phosphonate)) and [(Cp*Ir)2(μ-κ3-O,N,O-EDTA)] (Ir-EDTA, EDTA4− = ethylenediaminetetraacetate), were synthesized and completely characterized in solution, by multinuclear and multidimensional NMR spectroscopy, and in the solid state, by single crystal X-Ray diffraction. They were supported onto rutile TiO2 nanocrystals obtaining Ir-H4-EDTMP@TiO2 and Ir-EDTA@TiO2 hybrid materials. Both molecular complexes and hybrid materials were found to be efficient catalysts for WO driven by NaIO4, providing almost quantitative yields, and TON values only limited by the amount of NaIO4 used. As for the molecular catalysts, Ir-H4-EDTMP (TOF up to 184 min−1) exhibited much higher activity than Ir-EDTA (TOF up to 19 min−1), likely owing to the higher propensity of the former to generate a coordination vacancy through the dissociation of a Ir–OP bond (2.123 Å, significantly longer than Ir–OC, 2.0913 Å), which is a necessary step to activate these saturated complexes. Ir-H4-EDTMP@TiO2 (up to 33 min−1) and Ir-EDTA@TiO2 (up to 41 min−1) hybrid materials showed similar activity that was only marginally reduced in the second and third catalytic runs carried out after having separated the supernatant, which did not show any sign of activity, instead. The observed TOF values for hybrid materials are higher than those reported for analogous systems deriving from heterogenized mononuclear complexes. This suggests that supporting dinuclear molecular precursors could be a successful strategy to obtain efficient heterogenized water oxidation catalysts.

Details

Language :
English
ISSN :
20959273
Database :
OpenAIRE
Journal :
Science Bulletin, Science Bulletin, 2020, 65 (19), pp.1614-1625. ⟨10.1016/j.scib.2020.06.015⟩, Science Bulletin, Elsevier, 2020, 65 (19), pp.1614-1625. ⟨10.1016/j.scib.2020.06.015⟩
Accession number :
edsair.doi.dedup.....00932d258d5db205d8123c1c631f2611
Full Text :
https://doi.org/10.1016/j.scib.2020.06.015⟩