Back to Search Start Over

Sum List Edge Colorings of Graphs

Authors :
Arnfried Kemnitz
Margrit Voigt
Massimiliano Marangio
Source :
Discussiones Mathematicae Graph Theory, Vol 36, Iss 3, Pp 709-722 (2016)
Publication Year :
2016
Publisher :
Sciendo, 2016.

Abstract

Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f) over all edge choice functions f of G.

Details

Language :
English
ISSN :
20835892
Volume :
36
Issue :
3
Database :
OpenAIRE
Journal :
Discussiones Mathematicae Graph Theory
Accession number :
edsair.doi.dedup.....0078cbee54b4f1c4d1c0e6b1cbea9744