Back to Search
Start Over
Sum List Edge Colorings of Graphs
- Source :
- Discussiones Mathematicae Graph Theory, Vol 36, Iss 3, Pp 709-722 (2016)
- Publication Year :
- 2016
- Publisher :
- Sciendo, 2016.
-
Abstract
- Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f) over all edge choice functions f of G.
- Subjects :
- 0211 other engineering and technologies
0102 computer and information sciences
02 engineering and technology
Edge (geometry)
01 natural sciences
law.invention
Combinatorics
Greedy coloring
sum list edge coloring
law
Line graph
choice function
QA1-939
Discrete Mathematics and Combinatorics
Mathematics
List coloring
Discrete mathematics
021103 operations research
sum list coloring
Applied Mathematics
sum choice index
Complete coloring
line graph
Edge coloring
sum choice number
010201 computation theory & mathematics
Choice function
Subjects
Details
- Language :
- English
- ISSN :
- 20835892
- Volume :
- 36
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Discussiones Mathematicae Graph Theory
- Accession number :
- edsair.doi.dedup.....0078cbee54b4f1c4d1c0e6b1cbea9744