Back to Search Start Over

Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy

Authors :
Jiabao Ling
Yanzhou Chang
Zhongwen Yuan
Qi Chen
Lizhen He
Tianfeng Chen
Source :
ACS Applied Materials & Interfaces. 14:27651-27665
Publication Year :
2022
Publisher :
American Chemical Society (ACS), 2022.

Abstract

Rapid glycolysis of tumor cells produces excessive lactate to trigger acidification of the tumor microenvironment (TME), leading to the formation of immunosuppressive TME and tumor-associated macrophage (TAM) dysfunction. Therefore, reprogramming TAMs by depleting lactate with nanodrugs is expected to serve as an effective means of tumor-targeted immunotherapy. Herein, we report the use of lactic acid dehydrogenase (LDH)-mimicking SnSe nanosheets (SnSe NSs) loaded with a carbonic anhydrase IX (CAIX) inhibitor to reconstruct an acidic and immunosuppressive TME. As expected, this nanosystem could reprogram the TAM to achieve M1 macrophage activation and could also restore the potent tumor-killing activity of macrophages while switching their metabolic mode from mitochondrial oxidative phosphorylation to glycolysis. In addition, the repolarizing effect of SnSe NSs on macrophages was validated in a coculture model of bone marrow-derived macrophages, in three patient-derived malignant pleural effusion and in vivo mouse model. This study proposes a feasible therapeutic strategy for depleting lactate and thus ameliorating acidic TME employing Se-containing nanosheets, which could further amply the effects of TAM-based antitumor immunotherapy.

Details

ISSN :
19448252 and 19448244
Volume :
14
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....0073ea033f0c70a90c6c1285c0c9c980