Back to Search Start Over

Instability of Efavirenz Metabolites Identified During Method Development and Validation

Authors :
Andrew A. Somogyi
Daniel T. Barratt
Joseph Tucci
Natália Bordin Andriguetti
Paul Pumuye
Source :
Journal of pharmaceutical sciences. 110(10)
Publication Year :
2021

Abstract

Accurate quantification of efavirenz metabolites in patient samples is required to investigate their potential contribution to efavirenz adverse events. This study aimed to validate a LC-MS/MS method to quantify and investigate the stability of efavirenz and metabolites in human plasma. Compounds were extracted from plasma by supported liquid extraction and resolved on a C18 column. Validation was performed following FDA bioanalytical method validation guidelines. Stability under common conditions of sample pre-treatment and storage were assessed. Efavirenz and 8-hydroxyefavirenz were stable for all conditions tested. 7-Hydroxyefavirenz and 8,14-dihydroxyefavirenz were not stable in plasma at room temperature for 24 h (46%-69% loss), -20°C for 90 days (17%-50% loss), or 60°C for 1 h (90%-95% loss). Efavirenz and 8-hydroxyefavirenz concentrations in HIV/AIDS patient (n=5) plasma prepared from pre-treated (60°C for 1 h) whole blood varied from 517-8564 ng/mL and 131-813 ng/mL, respectively. 7-Hydroxyefavirenz and 8,14-dihydroxyefavirenz concentrations were below validated lower limits of quantification (0.25 and 0.5 ng/mL, respectively), most likely due to sample pre-treatment. This is the first report of 7-hydroxyefavirenz and 8,14-dihydroxyefavirenz instability under conditions commonly used in preparation of samples from HIV/AIDS patients. Alternative biosafety measures to heat pre-treatment must therefore be used for accurate quantification of plasma 7-hydroxyefavirenz and 8,14-dihydroxyefavirenz.

Details

ISSN :
15206017
Volume :
110
Issue :
10
Database :
OpenAIRE
Journal :
Journal of pharmaceutical sciences
Accession number :
edsair.doi.dedup.....0057d51f0c0ce4fe4407b6fe62e65bb7