Back to Search Start Over

A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography

Authors :
Bruno Loi
Aditya Sharma
Narendra N. Khanna
Alberto Boi
Luca Saba
Jasjit S. Suri
Deep Gupta
Ankush D Jamthikar
John R. Laird
Source :
Current Atherosclerosis Reports. 20
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Atherosclerotic plaque deposition within the coronary vessel wall leads to arterial stenosis and severe catastrophic events over time. Identification of these atherosclerotic plaque components is essential to pre-estimate the risk of cardiovascular disease (CVD) and stratify them as a high or low risk. The characterization and quantification of coronary plaque components are not only vital but also a challenging task which can be possible using high-resolution imaging techniques. Atherosclerotic plaque components such as thin cap fibroatheroma (TCFA), fibrous cap, macrophage infiltration, large necrotic core, and thrombus are the microstructural plaque components that can be detected with only high-resolution imaging modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Light-based OCT provides better visualization of plaque tissue layers of coronary vessel walls as compared to IVUS. Three dominant paradigms have been identified to characterize atherosclerotic plaque components based on optical attenuation coefficients, machine learning algorithms, and deep learning techniques. This review (condensation of 126 papers after downloading 150 articles) presents a detailed comparison among various methodologies utilized for plaque tissue characterization, classification, and arterial measurements in OCT. Furthermore, this review presents the different ways to predict and stratify the risk associated with the CVD based on plaque characterization and measurements in OCT. Moreover, this review discovers three different paradigms for plaque characterization and their pros and cons. Among all of the techniques, a combination of machine learning and deep learning techniques is a best possible solution that provides improved OCT-based risk stratification.

Details

ISSN :
15346242 and 15233804
Volume :
20
Database :
OpenAIRE
Journal :
Current Atherosclerosis Reports
Accession number :
edsair.doi.dedup.....00432bf7132e68f10b0ce727a8913ec3
Full Text :
https://doi.org/10.1007/s11883-018-0736-8