Back to Search
Start Over
Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights
- Source :
- Proceedings of the National Academy of Sciences. 102:10499-10504
- Publication Year :
- 2005
- Publisher :
- Proceedings of the National Academy of Sciences, 2005.
-
Abstract
- Glutamine synthetase catalyzes the ligation of glutamate and ammonia to form glutamine, with the resulting hydrolysis of ATP. The enzyme is a central component of bacterial nitrogen metabolism and is a potential drug target. Here, we report a high-yield recombinant expression system for glutamine synthetase of Mycobacterium tuberculosis together with a simple purification. The procedure allowed the structure of a complex with a phosphorylated form of the inhibitor methionine sulfoximine, magnesium, and ADP to be solved by molecular replacement and refined at 2.1-Å resolution. To our knowledge, this study provides the first reported structure for a taut form of the M. tuberculosis enzyme, similar to that observed for the Salmonella enzyme earlier. The phospho compound, generated in situ by an active enzyme, mimics the phosphorylated tetrahedral adduct at the transition state. Some differences in ligand interactions of the protein with both phosphorylated compound and nucleotide are observed compared with earlier structures; a third metal ion also is found. The importance of these differences in the catalytic mechanism is discussed; the results will help guide the search for specific inhibitors of potential therapeutic interest.
- Subjects :
- Models, Molecular
chemistry.chemical_classification
Multidisciplinary
Protein Conformation
Stereochemistry
Mycobacterium tuberculosis
Biological Sciences
Biology
Crystallography, X-Ray
Ligand (biochemistry)
Adenosine Diphosphate
Glutamine
Enzyme
Protein structure
chemistry
Biochemistry
Glutamate-Ammonia Ligase
Transition state analog
Methionine Sulfoximine
Glutamine synthetase
Magnesium
Nucleotide
Molecular replacement
Cloning, Molecular
DNA Primers
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 102
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....00135d4488e6418ec828f236e37e1438