Back to Search
Start Over
ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CONDITIONAL LR TESTS FOR MOMENT CONDITION MODELS
- Source :
- Econometric Theory. 33:1046-1080
- Publication Year :
- 2016
- Publisher :
- Cambridge University Press (CUP), 2016.
-
Abstract
- An influential paper by Kleibergen (2005,Econometrica73, 1103–1123) introduces Lagrange multiplier (LM) and conditional likelihood ratio-like (CLR) tests for nonlinear moment condition models. These procedures aim to have good size performance even when the parameters are unidentified or poorly identified. However, the asymptotic size and similarity (in a uniform sense) of these procedures have not been determined in the literature. This paper does so.This paper shows that the LM test has correct asymptotic size and is asymptotically similar for a suitably chosen parameter space of null distributions. It shows that the CLR tests also have these properties when the dimensionpof the unknown parameterθequals 1. Whenp≥ 2, however, the asymptotic size properties are found to depend on how the conditioning statistic, upon which the CLR tests depend, is weighted. Two weighting methods have been suggested in the literature. The paper shows that the CLR tests are guaranteed to have correct asymptotic size whenp≥ 2 when the weighting is based on an estimator of the variance of the sample moments, i.e., moment-variance weighting, combined with the Robin and Smith (2000,Econometric Theory16, 151–175) rank statistic. The paper also determines a formula for the asymptotic size of the CLR test when the weighting is based on an estimator of the variance of the sample Jacobian. However, the results of the paper do not guarantee correct asymptotic size whenp≥ 2 with the Jacobian-variance weighting, combined with the Robin and Smith (2000,Econometric Theory16, 151–175) rank statistic, because two key sample quantities are not necessarily asymptotically independent under some identification scenarios.Analogous results for confidence sets are provided. Even for the special case of a linear instrumental variable regression model with two or more right-hand side endogenous variables, the results of the paper are new to the literature.
- Subjects :
- Economics and Econometrics
Rank (linear algebra)
05 social sciences
Instrumental variable
Null (mathematics)
Estimator
01 natural sciences
Weighting
Moment (mathematics)
010104 statistics & probability
Dimension (vector space)
0502 economics and business
Applied mathematics
0101 mathematics
Social Sciences (miscellaneous)
Statistic
050205 econometrics
Mathematics
Subjects
Details
- ISSN :
- 14694360 and 02664666
- Volume :
- 33
- Database :
- OpenAIRE
- Journal :
- Econometric Theory
- Accession number :
- edsair.doi...........ff885ca1b072b69affe740beb4535ea0