Back to Search
Start Over
The algebraic functional equation of Riemann’s theta function
- Source :
- Annales de l'Institut Fourier. 70:809-830
- Publication Year :
- 2020
- Publisher :
- Cellule MathDoc/CEDRAM, 2020.
-
Abstract
- We give an algebraic analog of the functional equation of Riemann's theta function. More precisely, we define a `theta multiplier' line bundle over the moduli stack of principally polarized abelian schemes with theta characteristic and prove that its dual is isomorphic to the determinant bundle over the moduli stack. We do so by explicitly computing with Picard groups over the moduli stack. This is all done over the ring R=Z[1/2,i]: passing to the complex numbers, we recover the classical functional equation.
- Subjects :
- Pure mathematics
Ring (mathematics)
Algebra and Number Theory
010102 general mathematics
Theta function
01 natural sciences
Riemann hypothesis
symbols.namesake
Mathematics::Algebraic Geometry
Line bundle
0103 physical sciences
Functional equation
symbols
010307 mathematical physics
Geometry and Topology
0101 mathematics
Algebraic number
Theta characteristic
Mathematics::Symplectic Geometry
Mathematics
Stack (mathematics)
Subjects
Details
- ISSN :
- 17775310
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Annales de l'Institut Fourier
- Accession number :
- edsair.doi...........ff6fd9b828cb61adec158fe695c7ef3c
- Full Text :
- https://doi.org/10.5802/aif.3324