Back to Search Start Over

The algebraic functional equation of Riemann’s theta function

Authors :
Luca Candelori
Source :
Annales de l'Institut Fourier. 70:809-830
Publication Year :
2020
Publisher :
Cellule MathDoc/CEDRAM, 2020.

Abstract

We give an algebraic analog of the functional equation of Riemann's theta function. More precisely, we define a `theta multiplier' line bundle over the moduli stack of principally polarized abelian schemes with theta characteristic and prove that its dual is isomorphic to the determinant bundle over the moduli stack. We do so by explicitly computing with Picard groups over the moduli stack. This is all done over the ring R=Z[1/2,i]: passing to the complex numbers, we recover the classical functional equation.

Details

ISSN :
17775310
Volume :
70
Database :
OpenAIRE
Journal :
Annales de l'Institut Fourier
Accession number :
edsair.doi...........ff6fd9b828cb61adec158fe695c7ef3c
Full Text :
https://doi.org/10.5802/aif.3324